Key concepts and questions

What is a factor?

Use division and place value grids to check for remainders, if there is no remainder then the divisor is a factor of the whole. For example, $39 \div 3=13$, there are no remainders so 3 (the divisor) is a factor of 39 .

What is a prime factor?

- Use a factor tree to find the prime factor: each branch stops when it reaches a 5 prime number. These prime numbers al the prime factors of the whole.

Making connections

Place Value Ensure columns are lined up accurately.
Partitioning For example, this is a 20 not a 2, so there needs to be a place holder when multiplying by it.

Column Addition When you have multiplied, you will need to use column addition to find the answer.

Efficient methods

Use known multiplication and division facts.
$2 \times 8=16$ so $20 \times 8=160$ and $200 \times 8=1,600$
$6 \div 2=3$ so $60 \div 2=30$ and $60 \div 20=3$

Key Vocabulary			
multiply	divide	multiple	place value
commutative	Multiplication can be done in any order e.g. $6 \times 4=24$ and $4 \times 6=24$	composite number	Divides by itself, one and other integers
	prime number	Divides by itself and one	
remainder	A left over part	square	Multiply a number by itself, $8 \times 8=8^{2}$
multiple	The numbers in a times table e.g. 2, 4, 6, 8 are multiples of 2	square number	The product of a number multiplied by itself
factor	Divides a whole with no remainders e.g. 3 is a factor of 6 as $6 \div 3=2$	cube	Multiply a number by itself twice, $8 \times 8 \times 8=8^{3}$
prime factor	A factor that is a prime number.	cube number	The product of a number multiplied by itself 3 times

Representations

Arrays

This array shows $3 \times 5,5 \times 3,15 \div 3$ and $15 \div 5$. They can be made with concrete resources or drawn.

Bar models $70 \times 6=420$ and

$$
420 \div 6=70
$$

Multiplication grids Help with identifying common factors, common multiples and square numbers.

\times	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36

